Theses
1) P.-A. Nagy, A principle of separations of variables for the spectrum of Laplacian acting on forms and applications, PhD thesis, 142 pages, (2001) University of Savoie, France
2) P.- A. Nagy, Torsion and integrability of certain classes of almost-Kähler manifolds, Habilitationschrift des Fachbereichs Mathematik, 50 pages, Hamburg, Germany, Jan 26, 2011
Book chapter
3) P.-A. Nagy, Connections with totally skew-symmetric torsion and nearly-Kähler geometry, in:Handbook of pseudo-Riemannian geometry and supersymmetry, 347-398, IRMA Lect. Math. Theor. Phys., 16, Eur. Math. Soc., Z¨urich 2010
In international journals
4) P.-A. Nagy, On nearly-Kähler geometry, An. Glob. An. Geom. 22 (2002), 167-178
5) P.-A. Nagy, Nearly-Kähler geometry and Riemannian foliations, Asian J. Math. 6, no.3(2002), 481-504
6) P.-A. Nagy, Rigidity of Riemannian foliations with complex leaves on Kähler manifolds, Journal of Geometric Analysis 13(2003), no.4, 659-667
7) P.-A. Nagy, C. Vernicos The length of harmonic forms on a compact Riemannian man- ifold, Transactions of the American Math. Society 256 (2004), no.6, 2501-2513
8) I. Agricola, T. Friedrich, P.-A. Nagy, C. Puhle, On the Ricci tensor in the common sector of type II string theory, Class. Quantum Grav. 22 (2005), no.13, 2569-2577
9) A. Moroianu, P.-A. Nagy, U. Semmelmann, Unit Killing vector fields on nearly-Kähler manifolds, International J. Math. 16 (2005), no.3, 281-301
10) P.-A. Nagy, On length and product of harmonic forms in Kähler geometry, Math. Zeitschrift 254 (2006), 199-218
11) N. Bernhardt, P.-A. Nagy, On algebraic torsion forms and their spin holonomy algebras, Journal of Lie Theory 17(2007), no.2, 357-377
12) N. Bernhardt, P.-A. Nagy, Spin holonomy algebras of self-dual 4-forms in R , Journal of Lie Theory 17 (2007), no.4, 829-856
13) A. R. Gover, , P.-A. Nagy, Four-dimensional C-spaces, Quarterly Journal of Mathematics 58 (2007), no.4, 443-462
14) A. Moroianu, P.-A. Nagy, U. Semmelmann, Deformations of nearly-Kähler structures, Pacific Journal of Mathematics 235(2008), no.1, 57-72
15) J.-F. Grosjean, P.-A. Nagy, On the cohomology algebra of some classes of geometrically formal manifolds, Proceedings of the London Math. Society (3) 98(2009), no.3, 607-630
16) A. J. di Scala, P.-A. Nagy, On the uniqueness of almost Kähler structures, C.R. Acad.Sci. Paris, Sér. I, 348 (2010), no.7-8, 423-425
17) S. G. Chiossi, P.-A.Nagy, Complex homothetic foliations on Kähler manifolds, Bulletin of the London Math. Society 44(2012), 113-124
18) I. Kath, P.-A. Nagy, A splitting theorem for higher order parallel immersions, Proceedings of the American Math. Society 140(2012), no.8, 2873-2882
19) P.-A. Nagy, Skew-symmetric prolongations of Lie algebras and applications, Journal of Lie Theory 23(2013), no.1, 1-33
20) S. G. Chiossi, P.-A. Nagy, Systems of symplectic forms on four-manifolds, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze(5), vol.XII(2013), no.3, 717-734
21) T.Murphy, P.-A.Nagy, Complex Riemannian Foliations of open Kähler manifolds, Trans- actions of the American Math.Soc. 371(2019), no.7, 4895–4910
22) A.Moroianu, P.-A.Nagy, Toric nearly Kähler manifolds,Annals of Global Analysis and Geometry 55(2019),no.4, 703–717
23) Paul-Andi Nagy, Uwe Semmelmann, Conformal Killing forms in Kähler geometry Illinois J. Math. 66 (2022), no. 3, 349–384.
24)Deformations of nearly G2-structures, J. London Math. Soc. (2) 104 (2021) 1795–1811
25) Paul-Andi Nagy, Uwe Semmelmann, The G_2 geometry of 3-Sasaki structures J. Geom. Anal. 34 (2024), no. 2, Paper No. 61, 53 pp
26) Paul-Andi Nagy, Uwe Semmelmann, Eigenvalue estimates for 3-Sasaki structures J. Reine Angew. Math. 803 (2023), 35–60
National seminar proceedings
27) P.-A. Nagy, Le spectre du laplacien agissant sur les p-formes différentielles d’un fibré en cercles, Séminaire de théorie spectrale et géométrie, Grenoble, 17, (1999), 185-195
Preprints and accepted for publication
28) P.-A.Nagy, L.Ornea, Conformal foliations, Kähler twists and the Weinstein construc- tion, https://arxiv.org/abs/1909.11499
29) Paul-Andi Nagy, Uwe Semmelmann, Second order Einstein deformations, J. Math. Soc. Japan. vol.77, no.2(April 2025), in press
Elementary mathematics
30) P.-A. Nagy, The identity xn+1 = x in rings, Didactica Mathematica, 10 (1994), 91–94
31) P.-A. Nagy, On the convergence order of the real sequence 1/2 ln 2 + . . . 1/(n ln n) − ln(ln n), Didactica Mathematica, 10 (1994), 95–98
32) P.-A. Nagy, On a class of real sequences, Didactica Mathematica,10 (1994), 77–90
